
Using Dafny, an Automatic Program Veri�er

Luke Herbert1, K. Rustan M. Leino2, and Jose Quaresma1

1 Technical University of Denmark (lthhe,jncq)@imm.dtu.dk
2 Microsoft Research leino@microsoft.com

Abstract. These lecture notes present Dafny, an automated program

veri�cation system that is based on the concept of dynamic frames and

is capable of producing .NET executables. These notes overview the basic

design, Dafny's history, and summarizes the environment con�guration.

The key language constructs, and various system limits, are illustrated

through the development of a simple Dafny program. Further examples,

linked to online demonstrations, illustrate Dafny's approach to loop in-

variants, termination, data abstraction, and heap-related speci�cations.

1 Preface

These lecture notes introduce the programming and veri�cation language Dafny.
They are primarily based on lectures given by Rustan Leino in 2011 at the 8th
LASER Summer School, as transcribed by Luke Herbert and Jose Quaresma
(who were students at that summer school). Other references to Dafny and
in�uences on this tutorial include the Marktoberdorf Summer School lectures
from 2008 [10] and 2011 [9], and the online Dafny tutorial [8].

Dafny is a state-of-the-art implementation of an automated veri�cation sys-
tem based around the idea of dynamic frames [5, 6]. This is an approach to
formal veri�cation of program correctness that attempts to prove correctness
of individual program parts locally, and from there infer the correctness of the
whole program. The dynamic-frames approach makes it possible to reason about
subparts even in the presence of data-abstraction [15]. Dafny is a usable imple-
mentation of this approach which has been used to verify several non-trivial
algorithms.

This tutorial is a practical guide to using Dafny to write veri�able programs.
While some description of the design of Dafny is given, this is not complete and
serves mostly to overview Dafny use, and to point to more authoritative sources
of information on Dafny internals.

This tutorial provides extensive code examples. Most code examples have web
links to code pre-loaded in an online Dafny environment, which demonstrates
many key Dafny features. You can follow the code examples by visiting the cor-
responding footnote link, to see what Dafny reports, and to further experiment
with Dafny.

2 Background on Dafny

The Dafny programming language is designed to support static veri�cation of
programs. It is imperative, sequential, supports generic classes and dynamic al-
location, and, crucially, incorporates speci�cation constructs. The speci�cations
include pre- and post- conditions, frame speci�cations (read and write sets), loop
invariants, and termination metrics. To further support speci�cations, the lan-
guage also o�ers updatable ghost variables, recursive functions, and types like
algebraic datatypes, sets, and sequences. Speci�cations and ghost constructs are
used only during veri�cation; the compiler omits them from the executable code.
The Dafny compiler produces C# code, which is in turn compiled to MSIL byte-
code for the .NET platform by the standard Microsoft C# compiler. However,
the facilities for interfacing with other .NET code are minimal.

An overview of the entire Dafny system is given in �gure 1. The Dafny ver-
i�er is run as part of the compiler. A programmer interacts with it much in
the same way as with the static type checker; when the tool produces errors,
the programmer responds by changing the program's type declarations, speci�-
cations, and statements. Dafny's program veri�er works by translating a given
Dafny program into the intermediate veri�cation language Boogie 2 [1] in such
a way that the correctness of the Boogie program implies the correctness of the
Dafny program. Thus, the semantics of Dafny are de�ned in terms of Boogie
(a technique applied by many automatic program veri�ers). The Boogie tool is
then used to generate �rst-order veri�cation conditions that are passed to the
Z3 SMT solver [14]. Any violations of these conditions are passed back as ver-
i�cation errors. In parallel with the veri�cation of the code, a standard .NET
executable is also emitted.

Fig. 1. The Dafny system

Dafny is a descendant of a series of program veri�ers and extended static
checkers. When the Dafny project started, the most recent of these to reach some
maturity was the Spec# system [2], and a project to build the C program veri�er
VCC [3] was also in progress. Dafny started o� as a research test bed for some
speci�cation ideas that were being considered for VCC. Dafny provided a more
readable notation than the more primitive intermediate veri�cation language
Boogie, on which both Dafny and VCC rest. Dafny showed itself to be useful in
verifying little algorithms. To handle more complicated algorithms, features were
gradually added to Dafny. Dafny has grown from a programming notation to a
full programming language, and from a language intended only for veri�cation
to a language that also compiles to executable code. Dafny has been used to
verify a number of challenging algorithms, like the Schorr-Waite graph marking
algorithm [11] and Floyd's �tortoise and hare� cycle detection algorithm. Dafny
has also fared well in some program veri�cation competitions [7]. Because the
language was designed from scratch and with veri�cation in mind from the start,
it generally gives rise to cleaner programs than, say, programs veri�ed with
VCC, whose speci�cations are layered on top of an existing language. Moreover,
because Dafny is type safe and uses unbounded integers, speci�cations written
in Dafny are typically simpler than what is seen in, for example, VCC. For these
reasons, Dafny stands out as a good choice for teaching concepts of program
reasoning.

3 Getting Started with Dafny

To get started, we suggest using the interactive version of Dafny on http://

rise4fun.com/Dafny. While this does not provide all the capabilities of the
full Visual Studio version of the tool, in particular with regard to debugging, it
is able to thoroughly demonstrate the main capabilities of Dafny. Indeed, this
entire tutorial can be completed using the rise4fun website.

To run Dafny using your own computer, download the binaries from http://

boogie.codeplex.com. The binaries run on any .NET platform, which includes
Windows as well as any system with the Mono .NET development framework.

The smoothest way to run Dafny is in Microsoft Visual Studio 2010, which
brings the bene�ts of an integrated development environment where the program
veri�er runs in the background as the Dafny code is being developed. The instal-
lation currently requires downloading and building Dafny from source (also from
http://boogie.codeplex.com) and dealing with some hardcoded �le paths (see
the instructions on that site).

We also suggest you load the rise4fun website and type in the following
declaration of a simple method that swaps two variables.

method Swap(a : i n t , b : i n t) r e t u r n s (x : i n t , y : i n t)

This method declaration states that the Swap method receives two values a

and b as input and returns two values x and y as output. The intention is to let

http://rise4fun.com/Dafny
http://rise4fun.com/Dafny
http://boogie.codeplex.com
http://boogie.codeplex.com
http://boogie.codeplex.com

the output values be the input values in swapped order, that is to say that x

should have the value of b and y the value of a.
The central idea in Dafny is to express what the method is intended to do,

and then have Dafny verify that this is indeed what the method actually does
(an implementation of the concept of Hoare Logic [4]). Dafny can use an ensures

declaration to express a postcondition for a method, informing Dafny that the
variables should be swapped after execution of the method. This is applied to
the example as follows:

method Swap(a : i n t , b : i n t) r e t u r n s (x : i n t , y : i n t)
en su re s x == b && y == a ;

After the signature of the method has been declared, we can write the body
of the method which implements the swapping and use Dafny to verify that the
method does indeed achieve what is intended. The suggested way to use Dafny
is to �rst express what a method is intended to do, and then write the imple-
mentation of the method and let Dafny check if it is correct. For the preceding
example3, try to see if you can write a satisfactory method body.

4 The Basics of the Dafny Language

The swap example from section 3 on the previous page can be used to introduce
the basic constructs of the Dafny language. That example used two of Dafny's
basic constructs, namely method and ensures. Here is a body of imperative code
for the method:

method Swap(a : i n t , b : i n t) r e t u r n s (x : i n t , y : i n t)
en su re s x == b && y == a ;

{
x := b ;
y := a ;

}

The method body is contained within the braces and it consists of a series of
statements, such as assignments, conditionals, loops, and method calls. Assign-
ments in Dafny are performed using := and simple statements are followed by a
semi-colon.

The types of parameters, result values, and object �elds must be declared
explicitly, whereas the types of local variables (and of bound variables of quan-
ti�ed expressions, see section 7 on page 13) are usually inferred and can be
omitted. Dafny's types include bool for booleans, int for unbounded integers,
and nat for natural numbers (the non-negative integers, a subrange of int). User-
de�ned classes and inductive datatypes are allowed. Dafny provides set<T> for
an immutable �nite set of values of type T, and seq<T> for an immutable �-
nite sequence of values of type T. In addition, there are array types of one and

3 Interactive code sample: http://rise4fun.com/Dafny/VjhK

http://rise4fun.com/Dafny/VjhK

more dimensions, written array<T>, array2<T>, array3<T>, and so on. Finally,
the type object is a super-type of all reference types, implying that a value of
object can be a reference to any class instance or array, or the special value null .
However it should be noted that Dafny has no inheritance support or other class
subtypes.

The ensures keyword is used to specify a method's postcondition. A postcon-
dition expresses a property that must hold after every invocation of the method
through all possible return points. Postconditions form part of the method decla-
ration and appear before the body block. In the Swap method, the postcondition
says that the output values should have the inverse order from the input argu-
ments.

To make the example more interesting, instead of using method in- and out-
parameters, we can change the method to operate on two variables in the scope
enclosing the method. These variables are declared using the keyword var outside
the scope of the method. To be able to verify this new version of the Swapmethod,
two important modi�cations are needed.

The �rst modi�cation is due to the fact that the postcondition must be
expressed in terms of the state of the variables before and after method execution.
Dafny allows for this by making use of the old keyword, which when applied to
a variable (old(variable)) operates as a function which refers to the value of the
variable at the time the method was invoked.

The second modi�cation required is to declare which variables the method
is allowed to change, which is done using the keyword modi�es. Although the
declared variables may look like global variables, they are in fact �elds of an
implicit class. For now, just specify the Swap method with modi�es this , which
gives the method license to modify the �elds of the object on which it is in-
voked, which here means it is allowed to modify the variables x and y. These
modi�cations result in a new swap program:

va r x : i n t ;
va r y : i n t ;

method Swap ()
mod i f i e s t h i s ;
en su re s x == o ld (y) && y == o ld (x) ;

{
x := y ;
y := x ;

}

If you attempt to verify this code, Dafny reports that a postcondition might
not hold. This is because the implementation of the method is now wrong. As
an exercise, try to implement it correctly.

One possible solution using a temporary variable will look like this4:

va r tmp := x ;

4 Interactive code sample: http://rise4fun.com/Dafny/hpru

http://rise4fun.com/Dafny/hpru

x := y ;
y := tmp ;

The body of the Swap method can be expressed more succinctly by employing
parallel assignment. This avoids the use of a temporary variable and performs
the swap in a single line of code5.

x , y := y , x ;

If a Dafny program contains a unique parameter-less method calledMain, then
program execution will start there. It is not necessary to have a main method to
do veri�cation, only to produce a .NET executable. We will now create a Main

method which will call our Swap method to perform a swap.
The main method sets the initial value for variables x and y, call the Swap

method, and then check if the values of the variables were indeed swapped. This
is con�rmed by means of an assertion indicated by the assert keyword.

method Main ()
mod i f i e s t h i s ;

{
x := 5 ;
y := 10 ;
Swap () ;
a s s e r t x == 10 && y == 5 ;

}

An assertion statement forces Dafny to verify that the given boolean ex-
pression evaluates to true along all possible program paths to that point. You
can think of the program as crashing if the asserted condition does not hold.
Thus, only executions where the asserted condition holds ever get past the assert

statement. You can observe a consequence of this in the following Warn method6,
where the veri�er complains about the �rst assert statement but not the second�
because the second assertion does hold in every execution that gets past the �rst
assertion without crashing.

method Warn ()
{

va r x ;
a s s e r t x<10;
a s s e r t x<100;

}

It is okay to think of assert as possibly crashing the program at run time,
but note that programs must pass the veri�er before they are compiled, and the
veri�er will complain if it cannot prove the absence of such crashes.

You can now verify the complete swap program7. An alternative way to
implement the Swap method is:

5 Interactive code sample: http://rise4fun.com/Dafny/Zw5s
6 Interactive code sample: http://rise4fun.com/Dafny/AvCs
7 Interactive code sample: http://rise4fun.com/Dafny/slYEo

http://rise4fun.com/Dafny/Zw5s
http://rise4fun.com/Dafny/AvCs
http://rise4fun.com/Dafny/slYEo

x := x + y ;
y := x − y ;
x := x − y ;

You can check that the Swap method making use of this alternative method
implementation8 can also be veri�ed by Dafny. Note that Dafny is able to reason
about the arithmetic performed. While Dafny is able to reason about many
common mathematical constructs that appear in programs, like linear arithmetic
and boolean algebra, Dafny is not aware of all mathematical truths. For example,
in the following program, which requires a complex mathematical proof [16],
Dafny will not be certain that the postcondition will always hold. 9

method Fermat (a : i n t , b : i n t , c : i n t) r e t u r n s (ans : boo l)
en su re s (ans == t r ue) ;

{
ans := t r ue ;
i f (0 < a && 0 < b && 0 < c && a*a*a + b*b*b == c*c*c) {

ans := f a l s e ;
}

}

We can make the code more reusable if we change the swap program to use
an object encapsulating the data instead of using global variables. We will create
a class called Cell in Dafny in the following way:

c l a s s C e l l {
va r data : i n t ;

}

We created a class Cell with one integer variable called data. We can now
change the signature of the Swap method to make use of Cell objects. This
new version of the method will receive two Cell objects and swap their values.
However, this introduces a new requirement that the method's input parameters
should refer to proper Cell objects, that is, they can not have the null value.
We express this requirement using a precondition, a boolean expression which is
declared using the requires keyword. It is the responsibility of the caller to make
sure the preconditions hold at the call site, and it is the responsibility of the
callee (i.e. the method body) to make sure that the postconditions hold upon
return from the method.

Using the Cell class, we now have the following Swap method, which includes
pre- and post- conditions:

method Swap(x : Ce l l , y : C e l l)
r e q u i r e s x != n u l l && y != n u l l ;
en su re s x . data == o ld (y . data) && y . data == o ld (x . data) ;

{

8 Interactive code sample: http://rise4fun.com/Dafny/OUQP
9 Interactive code sample: http://rise4fun.com/Dafny/iwHS

http://rise4fun.com/Dafny/OUQP
http://rise4fun.com/Dafny/iwHS

x . data := x . data + y . data ;
y . data := x . data − y . data ;
x . data := x . data − y . data ;

}

To accommodate the new Cell class, we will also update the method that
calls the Swap method:

method Main ()
{

va r c , d := new Ce l l , new C e l l ;
c . data := 10 ; d . data := 20 ;
Swap (c , d) ;
a s s e r t d . data == 10 ;
a s s e r t c . data == 20 ;

}

In this version of the swap program10, Dafny will report a new error. Namely
that the Swap method performs an assignment which may update an object not
in the enclosing context's modi�es clause. This is due to the fact that, while
methods are allowed to read whatever memory they like, they are required to
declare which parts of memory they modify. The declaration is done with a
modi�es annotation, which lists the objects (or sets of objects) whose �elds may
be modi�ed. In this case, the method changes the �elds of the objects x and y,
so we change our method declaration to look like this:

method Swap(x : Ce l l , y : C e l l)
r e q u i r e s x != n u l l && y != n u l l ;
mod i f i e s x , y ;
en su re s x . data == o ld (y . data) && y . data == o ld (x . data) ;

{
x . data := x . data + y . data ;
y . data := x . data − y . data ;
x . data := x . data − y . data ;

}

That will solve the issue with modifying the cells11. Dafny now reports that
the postcondition of our Swapmethod might not hold. This might be unexpected,
since almost the same code for the Swap method was veri�ed earlier. The only
di�erence is that we are now using instances of the Cell class. This is the source of
the problem�the variables de�ned in the Cell classes are referenced by pointers,
which means the program now behaves di�erently. Speci�cally, when x.data and
y.data refer to the same object, i.e., when the references x and y are the same,
the value of this data �eld will always be 0 after we execute the Swap method.

To see if our reasoning is correct, we can use an assumption. An assumption
is a boolean expression, denoted by the assume keyword, which from that point

10 Interactive code sample: http://rise4fun.com/Dafny/lAKHt
11 Interactive code sample: http://rise4fun.com/Dafny/rG8

http://rise4fun.com/Dafny/lAKHt
http://rise4fun.com/Dafny/rG8

onward is treated as a veri�cation axiom. When using an assumption, the veri�er
only considers execution paths where the control �ow either does not reach that
assumption, or reaches the assumption and �nds that its condition evaluates to
true. Assumption statements are helpful to use temporarily when debugging a
veri�cation attempt, but they cannot be compiled and should not be left in the
�nal program (the compiler will complain if they are).

Placing the assumption assume x != y; in the body of our erroneous Swap

method implementation causes it to verify, thus con�rming our understanding
that the body is correct in this case12. The assumption has done its job, so let's
remove it and think about how to proceed.

One of the key bene�ts of Dafny is now clear. The Dafny veri�cation errors
produced while writing the Swap method show some of the subtle properties
of di�erent implementations. In fact, Dafny has exposed a problem that will
lead to a key design choice. One option is to keep the current implementation
which is able to swap any two di�erent cells, but which will return cells with
value 0 when asked to swap the same variable. This option requires changing the
speci�cation, either by altering the postcondition13 or by adding a precondition
that requires x and y to refer to di�erent objects14. Another option is to change
the implementation to allow for swapping without restrictions15.

5 Loop Invariants

So far, the code examples we have used have consisted of a �nite number of
control paths. When recursion or loops are involved, the number of control paths
may be in�nite. To reason about such control paths, it is necessary to provide
annotations at various program points along the way. For recursive calls, you
supply pre- and post- conditions, as we have already seen. For loops, you supply
a loop invariant.

A loop invariant is a boolean expression that holds at the start of every
iteration. The veri�er checks that the loop invariant holds at the point where
control �ow reaches the loop and checks that it holds again at the end of every
loop iteration. Thereby, it can assume the loop invariant to hold at the very
top of each iteration (meaning at the point where the loop guard is about to be
evaluated), which is how the veri�er reasons about the code in the loop body
and after the loop. In fact, the loop invariant is the only property the veri�er
remembers about the variables being modi�ed in the loop from one iteration to
another, so it is important to declare a loop invariant that says enough about
these variables. This is similar to the way calls are handled, where pre- and
post- conditions are the only properties that the veri�er takes across the call
boundaries.

12 Interactive code sample: http://rise4fun.com/Dafny/B78X
13 Interactive code sample: http://rise4fun.com/Dafny/YWYs
14 Interactive code sample: http://rise4fun.com/Dafny/HIBe
15 Interactive code sample: http://rise4fun.com/Dafny/6OL

http://rise4fun.com/Dafny/B78X
http://rise4fun.com/Dafny/YWYs
http://rise4fun.com/Dafny/HIBe
http://rise4fun.com/Dafny/6OL

To demonstrate the use of loop invariants, we will use a function. In Dafny, a
function body has exactly one expression, whose type corresponds to the func-
tion return type. These constructs can only be used in annotations and their
utility comes from the fact that they can be used to directly express program
speci�cations. However, functions are not part of the compiled code; they are
just used to aid program veri�cation.

Let's start by creating a recursive Fibonacci function that returns the value
of the n'th number of the zero-indexed Fibonacci sequence:

f u n c t i o n Fib (n : nat) : nat

{
i f n < 2 then n e l s e Fib (n−2) + Fib (n−1)

}

We can use this function in the loop invariant of an iterative version of the
Fibonacci method, and by making use of this invariant, Dafny can reason about
the loop in this method. This method will have the following signature:

method ComputeFib (n : nat) r e t u r n s (x : nat)
en su re s x == Fib (n) ;

The method receives a natural number (n) as input, and returns a natural
number (x) which is the n'th Fibonacci number. The second line is the postcon-
dition of the method and it tells us that the returned value is indeed the n'th
number of the zero indexed Fibonacci sequence.

In the body of the method, we wish to build the required Fibonacci number
iteratively. This can be done by using parallel assignment to both compute the
next Fibonacci number and perform the needed housekeeping of the position in
the sequence, in e�ect updating two numbers of the sequence at once. We will
use x and y to keep track of those two consecutive numbers, with y corresponding
to the newly computed number and x corresponding to number computed in the
previous iteration. That is to say, after i iterations of the loop, x is the i 'th
number of the Fibonacci sequence and y is the i+1'th.

method ComputeFib (n : nat) r e t u r n s (x : nat)
en su re s x == Fib (n) ;

{
va r i := 0 ;
x := 0 ;
va r y := 1 ;
wh i l e (i < n)
{

x , y := y , x+y ;
i := i + 1 ;

}
}

You can now see what Dafny what reports16.

16 Interactive code sample: http://rise4fun.com/Dafny/xeo

http://rise4fun.com/Dafny/xeo

As you might expect, Dafny cannot be certain that the postcondition holds.
That is because there is no loop invariant that describes the values of x, y, and
i through the iterations. Let us supply a loop invariant. We begin by describing
the possible values of the loop index i . We know that i starts at 0, and it will
increase until it is equal to n at which point the program will exit the loop. So
this is the �rst invariant:

i n v a r i a n t 0 <= i <= n ;

We also need to describe x and y in the loop invariant, but for instructional
purposes, let's explore what happens if we mention just x and not y. Remember,
we intend the code to maintain x as the i 'th value of the Fibonacci sequence,
where i is the number of iterations performed. So, we write the following loop
invariant:

i n v a r i a n t x == Fib (i) ;

Dafny can now tell that the postcondition will hold: Starting from the very
top of a loop iteration, the invariants about i and x hold. If the loop guard
(i < n) happens not to hold, that is, if n <= i, then the �rst loop invariant
lets the veri�er conclude i == n and the second loop invariant lets the veri�er
conclude x == Fib(n), which is the desired postcondition.

However, Dafny will now tell us that the second loop invariant might not
be preserved by the loop. This is because the next value of x depends on the
previous value of y, about which our loop invariants do not yet say anything. So,
we need to provide some information about the value of y in the loop. Remember
our intention about y, which is to maintain it as the i+1'th Fibonacci number.
Adding the corresponding loop invariant and running Dafny will now report that
the program is veri�ed successfully17.

f u n c t i o n Fib (n : nat) : nat

{
i f n < 2 then n e l s e Fib (n−2) + Fib (n−1)

}

method ComputeFib (n : nat) r e t u r n s (x : nat)
en su re s x == Fib (n) ;

{
va r i := 0 ;
x := 0 ;
va r y := 1 ;
wh i l e (i < n)

i n v a r i a n t 0 <= i <= n ;
i n v a r i a n t x == Fib (i) ;
i n v a r i a n t y == Fib (i +1);

{
x , y := y , x+y ;

17 Interactive code sample: http://rise4fun.com/Dafny/l4ey

http://rise4fun.com/Dafny/l4ey

i := i + 1 ;
}

}

Looking back at what we just did, you may see striking similarities between
loop invariants and mathematical proofs that use induction. At any time, the
loop invariant says what is true after all the loop iterations so far. When no
loop iterations have taken place, one has to check that the loop invariant holds
initially, which corresponds to the base case in typical proofs by induction. And
to prove that the loop invariant holds after k+1 iterations (for an arbitrary k),
one gets to assume that it holds after k iterations, which corresponds to assuming
the inductive hypothesis when doing the inductive step in typical proofs by
induction.

So now we know that if we exit the loop in our ComputeFib method, the
postcondition will hold. But what if we don't exit the loop? It's clearly desirable
to have Dafny assure us that the program will de�nitely exit the loop.

6 Termination: Variant Functions

Dafny can prove termination by using decreases annotations. If we can label each
loop iteration with a natural number and make sure that successive iterations
strictly decrease that label, then it follows that at run time the program can
only execute a �nite number of loop iterations, and that is all the information
needed to prove that the loop eventually terminates.

More generally, instead of a natural number, we can use any value as long
as we choose a well-founded relation which induces strictly decreasing chains,
i.e. it does not admit in�nite descending chains. Dafny prede�nes a well-founded
relation on each of its types, and it extends these to lexicographically ordered
tuples, which then also form a well-founded relation. The tuple of expressions
that labels a loop iteration is called a variant and is introduced using the keyword
decreases. In the majority of cases, Dafny is able to infer the correct decreases
annotations, but sometimes these have to be made explicit by the programmer.
Usually, there is a loop variable that is being increased or decreased to control
the number of iterations. When the loop condition is an inequality, it is normally
the distance between the two variables that is decreasing. That is what happens
in the Fibonacci sequence example, where we have i < n as the loop condition
where while (i < n). In this case, Dafny infers that what decreases in the loop is
the di�erence between n and i .

Similarly, in�nite recursion is avoided by labelling each recursive or mutually
recursive method or function with a variant, also introduced with the keyword
decreases.

Let us start by looking at an example of a simple recursive function that
returns the sum of all the elements of a sequence of integers18. The decreases
clause in the following example allows Sum to be calling itself with a sequence

18 Interactive code sample: http://rise4fun.com/Dafny/PAl

http://rise4fun.com/Dafny/PAl

whose length is decreased by one at each invocation. Since there is a lower bound
on the size of a sequence, this implies ordering on successive calls is well-founded,
and thus the recursion will eventually terminate.

f u n c t i o n Sum(xs : seq<i n t >) : i n t

dec r ea s e s xs ;
{

i f xs == [] then 0 e l s e xs [0] + Sum(xs [1 . .])
}

Now consider a more complex example, the Ackermann function19. As you
can see, the decreases clause has the lexicographic tuple m,n that allows Dafny
to prove termination. It proves this by using size comparisons of the component
values to determine whether the measure has shrunk. In this case it uses two
integers, but in general each component can be of di�erent types. The comparison
works lexicographically: if the �rst element, in this case m, is smaller, then it
doesn't matter what happens to the other values. They could increase, decrease,
or stay the same. The second element is only considered if the �rst element does
not change. Then, the second value needs to decrease. If it doesn't, then the third
element must decrease, etc. For proof of termination to be possible eventually,
one of the elements must decrease, and the values of any subsequent elements
are not taken into consideration.

f u n c t i o n Ackermann (m: nat , n : nat) : nat

dec r ea s e s m, n ;
{

i f m == 0 then

n + 1
e l s e i f n == 0 then

Ackermann (m − 1 , 1)
e l s e

Ackermann (m − 1 , Ackermann (m, n − 1))
}

Looking more closely at the Ackermann function, there are three recursive
calls. In the �rst, m becomes one smaller, but n increases. This makes the de-
creases clause valid since the �rst element of the tuple decreases (and it doesn't
matter what happens to the ones after that). In the second call, m also decreases,
so the second argument is again allowed to be any value. Dafny then needs to
prove that the third call obeys the termination measure. For this call, m remains
the same, but n decreases, so the overall measure decreases as well. Dafny is thus
able to prove the termination of the Ackermann function.

7 Lemmas

Sometimes, intricate logical steps are required to prove program correctness, but
they are too complex for Dafny to discover and use on its own. An example of

19 Interactive code sample: http://rise4fun.com/Dafny/hUYe

http://rise4fun.com/Dafny/hUYe

this is the Fermat method shown in section 4 on page 7. When this happens, we
can often give Dafny assistance by providing a lemma, which is a theorem used
to prove another result.

Lemmas allow Dafny to break a proof into two: prove the lemma, then use
it to prove the �nal result, i.e. the correctness of the program. Splitting up the
proof in this way helps Dafny to see the intermediate steps that make the proof
process easier. Lemmas are particularly useful for inductive arguments, which
are some of the hardest problems for theorem provers.

The most common type of lemma is a method lemma. A method lemma is a
method which has the desired property as a postcondition. The method does not
change any state, and doesn't need to be called at run time. For this reason, it is
declared to be a ghost method. It is present solely for its e�ect on the veri�cation
of the program, and to help the proof of the program. A typical method lemma
has the following structure:

ghost method Lemma (. . .)
en su re s (d e s i r a b l e p r o p e r t y) ;

{
. . .

}

Consider the following example; we will write a method that receives an
array of integers as input and returns the index of the �rst zero that occurs in
the array, or −1 if there are no zeros in the array. This is represented by the
following two postconditions:

en su re s i n d e x < 0 ==>
(f o r a l l i : : 0 <= i < a . Length ==> a [i] != 0) ;

en su re s 0 <= index ==>
index < a . Length && a [i ndex] == 0 &&
(f o r a l l i : : 0 <= i < index ==> a [i] != 0) ;

Let's say that the array our method receives has two properties: its elements
are non-negative and its values cannot decrease by more than one unit in con-
secutive positions. We will add these properties as preconditions to our method:

r e q u i r e s f o r a l l i : : 0 <= i < a . Length ==> 0 <= a [i] ;
r e q u i r e s f o r a l l i : : 0 < i < a . Length ==> a [i −1]−1 <= a [i] ;

When writing the method, we can take advantage of this property, because
if we know, for example, a[j] == 3, then we know that we will not �nd a zero
before a[j+3]. Generalizing this, if a[j] is non-zero, we know we will not �nd a
zero before a[j+a[j]] (due to the property that successive array values decrease
by at most one) and, therefore, we can accordingly jump positions in the array
while looking for the zeros. We thus have our FindZero method20.

method FindZero (a : ar ray<i n t >) r e t u r n s (i nd ex : i n t)
r e q u i r e s a != n u l l ;

20 Interactive code sample: http://rise4fun.com/Dafny/FVFT

http://rise4fun.com/Dafny/FVFT

r e q u i r e s f o r a l l i : : 0 <= i < a . Length ==> 0 <= a [i] ;
r e q u i r e s f o r a l l i : : 0 < i < a . Length ==> a [i −1]−1 <= a [i] ;
en su re s i n d e x < 0 ==>

(f o r a l l i : : 0 <= i < a . Length ==> a [i] != 0) ;
en su re s 0 <= index ==> (index < a . Length && a [i ndex] == 0 &&

(f o r a l l i : : 0 <= i < index ==> a [i] != 0)) ;
{

i ndex := 0 ;
wh i l e (i nd ex < a . Length)

i n v a r i a n t 0 <= index ;
i n v a r i a n t f o r a l l k : : 0 <= k < index && k < a . Length ==>

a [k] != 0 ;
{

i f (a [i nd e x] == 0) { r e t u r n ; }
i nd ex := i n d e x + a [i nd ex] ;

}
i nd ex := −1;

}

If you check this code using Dafny, it will report that it cannot prove the
loop invariant, since we are jumping several positions of the array. But we can
write a lemma that allows Dafny to prove that loop invariant.

We want to prove that the elements of the array between a[j] and a[j+a[j]]

cannot be zero. So we write a method that receives an array with the properties
mentioned previously and an index j and proves that there are no zeros between
a[j] and a[j+a[j]] .

ghost method JumpingLemma (a : ar ray<i n t >, j : i n t)
r e q u i r e s a != n u l l ;
r e q u i r e s f o r a l l i : : 0 <= i < a . Length ==> 0 <= a [i] ;
r e q u i r e s f o r a l l i : : 0 < i < a . Length ==> a [i −1]−1 <= a [i] ;
r e q u i r e s 0 <= j < a . Length ;
en su re s f o r a l l i : : j <= i < j + a [j] && i < a . Length ==>

a [i] != 0 ;
{}

Before writing the body of this method, we can try to use it together with
the FindZero method to see if our lemma helps Dafny prove the loop invariant.
(It is not a problem that we didn't write the body yet, since when evaluating
the FindZero method, it will only use the postconditions from the JumpingLemma

method). The key change to the while loop in the FindZero method is shown
below21:

wh i l e (i nd ex < a . Length)
i n v a r i a n t 0 <= index ;
i n v a r i a n t f o r a l l k : : 0 <= k < index && k < a . Length ==>

a [k] != 0 ;
{

21 Interactive code sample: http://rise4fun.com/Dafny/7bN

http://rise4fun.com/Dafny/7bN

i f (a [i nd e x] == 0) { r e t u r n ; }
JumpingLemma (a , i nd ex) ;
i nd e x := i n d e x + a [i nd ex] ;

}

As you can see, Dafny is now able to prove the loop invariant in the FindZero

program. It still complains, but now because it is not able to prove the postcon-
dition of our lemma, and it was not supposed to, since we didn't write the body
of the method yet.

When constructing the body, we want to iterate the array's index from j to
j + a[j] (making sure that it is still smaller than the size of the array) and prove
that each of those elements is non-zero. The following code will achieve this:

va r i := j ;
wh i l e (i < j + a [j] && i < a . Length)

i n v a r i a n t i < a . Length ==> a [j] − (i−j) <= a [i] ;
i n v a r i a n t f o r a l l k : : j <= k < i && k < a . Length ==>

a [k] != 0 ;
{

i := i + 1 ;
}

The �rst invariant represents the fact that the value of a[j] subtracted by the
distance between j and i is smaller or equal than a[i]. This intuitively expresses
the fact that, for example, the value of a[j+3] is not less than a[j]−3. This
property can be inferred from the properties of the arrays, step by step. The
other invariant states that the values of the array between a[j] and a[i] (which
corresponds to the current iteration) are non-zero. Using this code as the method
body will allow Dafny to prove the postconditions of the lemma. In turn, the
postcondition of the lemma method allows the veri�er to prove that the loop
invariant in FindZero is maintained, which completes the proof of correctness of
FindZero22.

Note how the lemma and its proof were themselves expressed as a Dafny
method. Essentially, because Dafny already knows how to reason about calls
and loops, which are related to mathematical induction, these programming
features can also be used to prove lemmas by induction. This is powerful and
useful, and the power is accessible via ordinary constructs used in programming
and program veri�cation.

8 Abstraction

So far, the programs we have seen would be considered examples of programming
in the small. For such programs, it is common that method speci�cations serve
to hide the algorithmic details used in the method's implementation. When a
program is larger and contains reusable components, it is desirable to hide more

22 Interactive code sample: http://rise4fun.com/Dafny/bqu

http://rise4fun.com/Dafny/bqu

implementation details than we have seen until now. In particular, it becomes
desirable to hide the details of how data is represented. That is the subject of
this section and the next.

To motivate and demonstrate abstraction in Dafny programs, let us intro-
duce a class Counter, which behaves like a simple counter, with the following
speci�cation:

c l a s s Counter
{

va r Value : i n t ;

c on s t r u c t o r I n i t ()
mod i f i e s t h i s ;
en su re s Value == 0 ;

method GetValue () r e t u r n s (x : i n t)
en su re s x == Value ;

method I n c ()
mod i f i e s t h i s ;
en su re s Value == o ld (Value) + 1 ;

method Dec ()
mod i f i e s t h i s ;
en su re s Value == o ld (Value) − 1 ;

}

We have not shown it here, but it is easy to write implementations for these
methods and to create a Main method to test the class and its speci�cations23.

The variable Value is a simple way to explain the operation of the class to
clients. However, suppose the implementer of the class wants to represent Value in
an alternative way? To illustrate this point, suppose the Counter implementation
counts the number of increment and decrement operations; then Value can be
represented as the di�erence between those two counts. We declare two more
variables:

va r i n c s : i n t ;
va r decs : i n t ;

These variables can be initialized in the constructor and updated appropriately
in the Inc and Dec methods.

We would now like to change the implementation of GetValue to compute the
return value in terms of incs and decs, rather than Value. That is, we want the
implementation to do x := incs − decs, but we want the speci�cation to still show
the postcondition as x == Value, which is simpler. To verify this postcondition,
it now becomes necessary to make explicit the relationship between the more ab-
stract view of the class (Value) and the more concrete view of the implementation
(incs and decs).

23 Interactive code sample: http://rise4fun.com/Dafny/K9iD

http://rise4fun.com/Dafny/K9iD

One way to make this relationship explicit would be to add Value == incs − decs

to the postcondition of the constructor and to the pre- and post- conditions of
the methods. This would not be satisfactory, for two reasons. First, if the rela-
tion ever were to change, we would have to update the program text in many
places. Second, and more importantly, the details of this relation are to remain
private with the class implementation; clients of the class should not have to be
concerned with the details. So, we instead write the relation in the body of a
function that we shall name Valid:

f u n c t i o n Va l i d () : boo l

r eads t h i s ;
{

Value == i n c s − decs
}

In this declaration, we see a new annotation: reads. Just like methods have
to declare which parts of the object store they may update, functions have to
declare which parts of the object store they depend on. We will have more to
say about these so-called frame issues in the next section.

Finally, we need to use and enforce this relationship, which we do by adding
Valid () as postcondition of the constructor and as a pre- and post- condition of
all methods which ensures that if the relationship holds before invocation it must
also do so after execution. Since we now no longer need Value in the compiled
code, we can mark it as ghost.

By applying the suggested changes, we can now verify the program24. Because
Value is a ghost variable, it will not be present in the compiled code and hence
it is necessary to have the GetValue method so that we can have access to the
actual value of the Counter instance we will be using.

c l a s s Counter
{

// p u b l i c v a r i a b l e
ghost va r Value : i n t ;
// p r i v a t e v a r i a b l e s
va r i n c s : i n t ;
va r decs : i n t ;

f u n c t i o n Va l i d () : boo l

r eads t h i s ;
{

Value == i n c s − decs
}

c on s t r u c t o r I n i t ()
mod i f i e s t h i s ;
en su re s Va l i d () ;
en su re s Value == 0 ;

24 Interactive code sample: http://rise4fun.com/Dafny/or9

http://rise4fun.com/Dafny/or9

{
i n c s , decs , Value := 0 , 0 , 0 ;

}

method GetValue () r e t u r n s (x : i n t)
r e q u i r e s Va l i d () ;
en su re s x == Value ;

{
x := i n c s − decs ;

}

method I n c ()
r e q u i r e s Va l i d () ;
mod i f i e s t h i s ;
en su re s Va l i d () ;
en su re s Value == o ld (Value) + 1 ;

{
i n c s , Value := i n c s + 1 , Value + 1 ;

}

method Dec ()
r e q u i r e s Va l i d () ;
mod i f i e s t h i s ;
en su re s Va l i d () ;
en su re s Value == o ld (Value) − 1 ;

{
decs , Value := decs + 1 , Value − 1 ;

}
}

method Main ()
{

va r c := new Counter . I n i t () ;
c . I n c () ; c . I n c () ;
c . Dec () ;
c . I n c () ;
a s s e r t c . Value == 2 ;

}

9 Dynamic Frames

In the previous section, we presented a way to specify the behavior of a class in
terms of a ghost variable. We related the value of the ghost variable to the values
of implementation variables in a function Valid, which we mentioned in method
pre- and post- conditions (essentially as a class invariant [13]). This speci�cation
idiom also applies when a class implementation uses more complicated data
structures, except that we need to extend the idiom to better deal with framing,
that is, reads and modi�es clauses.

Let us continue with the Counter example from the previous section, but use
our previous Cell class, from section 4 on page 7, for the incs and decs variables
instead of integers:

va r i n c s : C e l l ;
va r decs : C e l l ;

We let the constructor initialize these �elds by allocating new Cell objects:

i n c s , decs := new Ce l l , new C e l l ;
i n c s . data , decs . data , Value := 0 , 0 , 0 ;

In the other methods, we replace incs and decs with incs .data and decs.data,
respectively. We apply that replacement in function Valid, too; in addition, we
need Valid to express that the two Cell references are non-null and distinct:

i n c s != n u l l && decs != n u l l && i n c s != decs &&
Value == i n c s . data − decs . data

If we try to verify the resulting program25, we get complaints about violating
the declared frames�function Valid is reading more than its reads clause allows,
and methods Inc and Dec modify more than their modi�es clauses allow. A quick
�x to this problem is to change these three frame speci�cations to also list the
object referenced by incs and decs26. This quick �x is unsatisfactory, because it
exposes the implementation �elds incs and decs in public speci�cations. We need
a way to abstract over these �elds in the speci�cations.

A solution to this problem is dynamic frames [5, 6]. In Dafny, a dynamic
frame is simply an expression that denotes a set of objects and that is used in
reads and modi�es clauses. The frame is dynamic in the sense that the expression
may evaluate to di�erent sets of objects, depending on the program state. We
will now describe the standard idiom for using dynamic frames in Dafny.

We start by introducing a variable Repr, which will stand for the set of ob-
jects in the object's representation. In the case of Counter, that set of objects
is {this , incs , decs}. The type of Repr is set<object>, and since the �eld will be
used only in speci�cations, not at run time, we declare it as ghost.

ghost va r Repr : set<ob jec t >;

We change the constructor to initialize Repr to the desired set, and we change
the frames of methods Inc and Dec to:

mod i f i e s Repr ;

which says that the method is allowed to modify an object in the set Repr. More
precisely, this modi�es clause gives the method license to modify the �elds of any
object o that, at the time the method is invoked, is in the set denoted by Repr.

Note, by the way, that the frame for the constructor Init is still just this . This
is desirable and is part of the standard idiom. First, at the time the constructor

25 Interactive code sample: http://rise4fun.com/Dafny/H065
26 Interactive code sample: http://rise4fun.com/Dafny/dqu

http://rise4fun.com/Dafny/H065
http://rise4fun.com/Dafny/dqu

is called, the �eld Repr has an unknown value, so it would not make sense to
list it in the modi�es clause. Second, the data �elds to which Init assigns belong
to objects that were created after Init was invoked, and Dafny allows any such
newly allocated objects to be modi�ed, without any need to mention them in
the modi�es clause. Third, the only other modi�cations performed by Init are to
�elds of this , as permitted by modi�es this .

We have a few more things to address before we are done. If we tried to verify
the program as it stands now27, the veri�er would complain that methods Inc

and Dec do not respect their frames, which are speci�ed by modi�es Repr. The
reason for this is that the preconditions of these methods do not say anything
about the contents of Repr. To address this problem, we want to change the
de�nition of Valid to say something about Repr. So, let us change the de�nition
of Valid to this:

f u n c t i o n Va l i d () : boo l

r eads t h i s , Repr ;
{

t h i s i n Repr && n u l l ! i n Repr &&
i n c s i n Repr && decs i n Repr &&
i n c s != decs &&
Value == i n c s . data − decs . data

}

We did several changes here. First, validity now implies that this is in Repr.
Second, by convention, we exclude null from Repr (this isn't strictly necessary,
but we strongly recommend it�in our experience, the veri�cation errors that
can arise from allowing null in Repr may not make it evident that the problem
is somehow related to null and can therefore be confusing). Third, we list incs

and decs as being contained in Repr. Fourth, since Repr does not contain null ,
it follows that incs and decs are non-null, so we don't need to mention those
properties explicitly. Finally, we changed the reads clause, which requires some
further explanation.

Why does the frame of Valid explicitly list this? Why doesn't just reads Repr

su�ce?
It may seem that reads Repr would su�ce, since we intend this to be included

in Repr. However, when checking that the body of Valid adheres to the reads
frame, the veri�er does not know anything about Repr. It may help to consider
how the body of Valid would be evaluated from an arbitrary state at run time:
The �rst conjunct (this in Repr) can evaluate to either false or true. If it evaluates
to false , the function can return false without evaluating the other conjuncts.
If it evaluates to true, then this in Repr holds. In either case, note that the
remaining conjuncts are evaluated only if this in Repr holds, which means that
reads Repr implies the �elds of this can be read. By to read the �rst conjunct
itself, which includes the �eld this .Repr, the veri�er needs to know that this is
allowed by the frame. To break this bootstrapping circularity, we simply list
both this and Repr in the reads clause.

27 Interactive code sample: http://rise4fun.com/Dafny/aAwn

http://rise4fun.com/Dafny/aAwn

By changing Valid as described above, our class veri�es28, but we're not quite
done yet, because our postcondition speci�cations are not strong enough to be
useful for clients. Consider some client code, like the Main method we used to
test the class in the previous section29:

method Main ()
{

va r c := new Counter . I n i t () ;
c . I n c () ; c . I n c () ;
c . Dec () ;
c . I n c () ;
a s s e r t c . Value == 2 ;

}

This code gives rise to several frame violation errors. The problem is that the
postconditions of Init and the other methods do not say enough about the objects
in Repr. For example, the speci�cations would allow a method to change incs to
point to a Cell object in use by another Counter object30:

method ShareMe (cnt : Counter)
r e q u i r e s Va l i d () && cnt != n u l l && cnt . Va l i d () ;
mod i f i e s Repr ;
en su re s Va l i d () && Value == o ld (Value) ;

{
i f (i n c s . data == cnt . i n c s . data) {

i n c s . data := cnt . i n c s . data ;
}

}

Calling this method could lead to two Counter objects sharing the same rep-
resentation. Dafny allows such speci�cations and implementations, which are
sometimes useful. The situation is �ne, because the possibility of sharing does
not escape the veri�er. Indeed, this is why the veri�er complains about the Main

client above.
To correct the problem, we show the �nal part of the standard dynamics-

frame idiom in Dafny. To the constructor, we add the postcondition:

en su re s f r e s h (Repr − { t h i s }) ;

which says that, upon return from Init , all objects other than this in Repr are
ones that were allocated after Init was invoked. In other words, Init sets Repr

to some set of newly allocated objects, except it may also possibly contain this .
This speci�cation is abstract enough to not explicitly mention the private Counter
implementation, and yet strong enough to allow a client to follow up the call to
Init by a call to a method (like Inc or Dec) declared with modi�es Repr�after
all, any object newly allocated in Init is also newly allocated in the caller, Main,

28 Interactive code sample: http://rise4fun.com/Dafny/MsRQ
29 Interactive code sample: http://rise4fun.com/Dafny/uT0k
30 Interactive code sample: http://rise4fun.com/Dafny/7RSR

http://rise4fun.com/Dafny/MsRQ
http://rise4fun.com/Dafny/uT0k
http://rise4fun.com/Dafny/7RSR

so the caller is allowed to modify the objects that, upon return from Init , are
contained in Repr.

We add a similar postcondition to the mutating methods Inc or Dec:

en su re s f r e s h (Repr − o ld (Repr)) ;

This postcondition says that any objects added to Repr are newly allocated. The
program now veri�es31:

c l a s s C e l l {
va r data : i n t ;

}

c l a s s Counter
{

// p u b l i c v a r i a b l e
ghost va r Value : i n t ;
ghost va r Repr : set<ob jec t >;
// p r i v a t e v a r i a b l e s
va r i n c s : C e l l ;
va r decs : C e l l ;

f u n c t i o n Va l i d () : boo l

r eads t h i s , Repr ;
{

t h i s i n Repr && n u l l ! i n Repr &&
i n c s i n Repr && decs i n Repr &&
i n c s != decs &&
Value == i n c s . data − decs . data

}

c on s t r u c t o r I n i t ()
mod i f i e s t h i s ;
en su re s Va l i d () && f r e s h (Repr − { t h i s }) ;
en su re s Value == 0 ;

{
i n c s , decs := new Ce l l , new C e l l ;
i n c s . data , decs . data , Value := 0 , 0 , 0 ;
Repr := { t h i s } ;
Repr := Repr + { in c s , decs } ;

}

method GetValue () r e t u r n s (x : i n t)
r e q u i r e s Va l i d () ;
en su re s x == Value ;

{
x := i n c s . data − decs . data ;

}

31 Interactive code sample: http://rise4fun.com/Dafny/fGVu

http://rise4fun.com/Dafny/fGVu

method I n c ()
r e q u i r e s Va l i d () ;
mod i f i e s Repr ;
en su re s Va l i d () && f r e s h (Repr − o ld (Repr)) ;
en su re s Value == o ld (Value) + 1 ;

{
i n c s . data , Value := i n c s . data + 1 , Value + 1 ;

}

method Dec ()
r e q u i r e s Va l i d () ;
mod i f i e s Repr ;
en su re s Va l i d () && f r e s h (Repr − o ld (Repr)) ;
en su re s Value == o ld (Value) − 1 ;

{
decs . data , Value := decs . data + 1 , Value − 1 ;

}
}

method Main ()
{

va r c := new Counter . I n i t () ;
c . I n c () ; c . I n c () ;
c . Dec () ;
c . I n c () ;
a s s e r t c . Value == 2 ;

}

Our explanation of the standard dynamic-frames idiom may have been long,
but the idiom is simple to follow: First, declare the ghost variable Repr, and let
Valid describe the contents of Repr as we did above. Then, declare constructors
(like Init) to include the following speci�cation:

mod i f i e s t h i s ;
en su re s Va l i d () && f r e s h (Repr − { t h i s }) ;

declare mutating methods (like Inc and Dec) to include the following speci�ca-
tion:

r e q u i r e s Va l i d () ;
mod i f i e s Repr ;
en su re s Va l i d () && f r e s h (Repr − o ld (Repr)) ;

and declare query methods (like GetValue) to include the following speci�cation:

r e q u i r e s Va l i d () ;

These idiomatic speci�cations may be verbose, but they lend themselves to
modular speci�cations and can �exibly be adapted to allow various forms of
sharing of data structures.

10 Conclusion

Dafny is a general-purpose speci�cation language and veri�er. Through programmer-
provided speci�cations and other annotations, it makes possible the veri�cation
of the functional correctness of a program. The symbol manipulation in the
proofs themselves is performed in a mostly automatic fashion, hidden from the
user of the tool.

In these lecture notes, we have introduced Dafny through a series of simple
examples. We have demonstrated a key strength of Dafny, namely abstraction
and dynamic frames, which allow us to scale to larger programs (for further
information on this see, for example, [12]). By learning and using Dafny, you can
construct programs that behave as speci�ed. The concept you learn along the
way also apply when programming in other languages, even if you don't have a
veri�cation tool and instead do the reasoning informally.

Acknowledgments

We are indebted to the reviewers, who gave a lot of themselves to take us through
various drafts of these lecture notes. Thank you!

References

[1] Mike Barnett et al. �Boogie: A Modular Reusable Veri�er for Object-
Oriented Programs�. In: Formal Methods for Components and Objects:

4th International Symposium, FMCO 2005. Ed. by Frank S. de Boer et
al. Vol. 4111. Lecture Notes in Computer Science. Springer, Sept. 2006,
pp. 364�387. doi: doi:10.1007/11804192_17.

[2] Mike Barnett et al. �Speci�cation and Veri�cation: The Spec# Experi-
ence�. In: Communications of the ACM 54.6 (June 2011), pp. 81�91. issn:
0001-0782. doi: 10.1145/1953122.1953145.

[3] Ernie Cohen et al. �VCC: A Practical System for Verifying Concurrent C�.
In: Proceedings of the 22nd International Conference on Theorem Prov-

ing in Higher Order Logics. Ed. by Stefan Berghofer et al. Vol. 5674. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer-Verlag, Aug.
2009, pp. 23�42. isbn: 978-3-642-03358-2. doi: 10.1007/978- 3- 642-
03359-9_2.

[4] C. A. R. Hoare. �An axiomatic basis for computer programming�. In: Com-

munications of the ACM 12.10 (Oct. 1969), pp. 576�580. issn: 0001-0782.
doi: 10.1145/363235.363259.

[5] Ioannis T. Kassios. �Dynamic Frames: Support for Framing, Dependen-
cies and Sharing Without Restrictions�. In: FM 2006: Formal Methods,

14th International Symposium on Formal Methods. Ed. by Jayadev Misra,
Tobias Nipkow, and Emil Sekerinski. Vol. 4085. Lecture Notes in Com-
puter Science. Springer, Aug. 2006, pp. 268�283. isbn: 3-540-37215-6. doi:
10.1007/11813040_19.

http://dx.doi.org/doi:10.1007/11804192_17
http://dx.doi.org/10.1145/1953122.1953145
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1007/11813040_19

[6] Ioannis T. Kassios. �The dynamic frames theory�. In: Formal Aspects of

Computing 23 (3 2011), pp. 267�288. issn: 0934-5043. doi: 10.1007/
s00165-010-0152-5.

[7] Vladimir Klebanov et al. �The 1st Veri�ed Software Competition: Expe-
rience Report�. In: FM 2011: Formal Methods - 17th International Sym-

posium on Formal Methods. Ed. by Michael Butler and Wolfram Schulte.
Vol. 6664. Lecture Notes in Computer Science. Springer, June 2011, pp. 154�
168.

[8] Jason Koenig. Dafny Guide. Microsoft Research. 2011. url: http : / /
rise4fun.com/Dafny/tutorial/guide (visited on 01/30/2012).

[9] Jason Koenig and K. Rustan M. Leino. �Getting Started with Dafny: A
Guide�. In: Summer School Marktoberdorf 2011 lecture notes, to appear.
IOS Press, 2012.

[10] K. Rustan M. Leino. �Speci�cation and veri�cation of object-oriented soft-
ware�. In: Engineering Methods and Tools for Software Safety and Security.
Ed. by Manfred Broy, Wassiou Sitou, and Tony Hoare. Vol. 22. NATO
Science for Peace and Security Series D: Information and Communication
Security. Summer School Marktoberdorf 2008 lecture notes. IOS Press,
2009, pp. 231�266.

[11] K. Rustan M. Leino. �Dafny: An Automatic Program Veri�er for Func-
tional Correctness�. In: Proceedings of the 16th international conference on

Logic for programming, arti�cial intelligence, and reasoning. Ed. by Ed-
mund M. Clarke and Andrei Voronkov. Vol. 6355. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer-Verlag, Apr. 2010, pp. 348�370.
isbn: 978-3-642-17510-7. doi: 10.1007/978-3-642-17511-4_20.

[12] K. Rustan M. Leino and Rosemary Monahan. �Dafny meets the veri�ca-
tion benchmarks challenge�. In: Veri�ed Software: Theories, Tools, Exper-

iments, Third International Conference, VSTTE 2010. Ed. by Gary T.
Leavens, Peter W. O'Hearn, and Sriram K. Rajamani. Vol. 6217. Lec-
ture Notes in Computer Science. Springer, Aug. 2010, pp. 112�126. doi:
10.1145/1592434.1592439.

[13] Bertrand Meyer. Object-oriented Software Construction. Series in Com-
puter Science. Prentice-Hall International, 1988.

[14] Leonardo de Moura and Nikolaj Bjørner. �Z3: An E�cient SMT Solver�. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer Berlin, Apr. 2008. Chap. 24,
pp. 337�340. isbn: 978-3-540-78799-0. doi: 10.1007/978-3-540-78800-
3_24.

[15] Benjamin Weiÿ. �Deductive veri�cation of object-oriented software: dy-
namic frames, dynamic logic and predicate abstraction�. PhD thesis. Karl-
sruhe Institute of Technology, 2011.

[16] Andrew Wiles. �Modular Elliptic Curves and Fermat's Last Theorem�.
In: The Annals of Mathematics 141.3 (May 1995), pp. 443�551. issn:
0003486X. doi: 10.2307/2118559.

http://dx.doi.org/10.1007/s00165-010-0152-5
http://dx.doi.org/10.1007/s00165-010-0152-5
http://rise4fun.com/Dafny/tutorial/guide
http://rise4fun.com/Dafny/tutorial/guide
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1145/1592434.1592439
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.2307/2118559

	Using Dafny, an Automatic Program Verifier

